
Using de Bruijn Sequences toIndex a 1 in a Computer WordCharles E. LeisersonHarald ProkopKeith H. RandallMIT Laboratory for Computer Science, Cambridge, MA 02139, USAfcel,prokop,randallg@lcs.mit.eduJuly 7, 1998AbstractSome computers provide an instruction to �nd the index of a 1 in a computer word,but many do not. This paper provides a fast and novel algorithm based on de Bruijnsequences to solve this problem. The algorithm involves little more than an integermultiply and a lookup in a small table. We compare the performance of our algorithmwith other popular strategies that use table lookups or oating-point conversion.1 IntroductionMany applications that use one-word bit vectors require the ability to �nd the binary indexof a 1 in a word. For example, some computers set a bit in an interrupt mask when aninterrupt occurs, and the interrupt handler must determine which bit is set in order toproperly vector the interrupt. Many chess programs represent the pieces of a given type asa 64-bit word, each bit of which indicates the presence or absence of the piece type on aparticular square of the chessboard [5]. To determine which square a piece occupies as arow/column index, the index of a 1 bit must be determined.To illustrate this indexing problem, suppose an 8-bit word contains 00100010. Thisword contains 1's in positions 1 and 5, where we count from the low-order (rightmost) bit.The problem is to provide a fast algorithm that given such a word, outputs either 1 or 5in binary. Some computers provide instructions FFO (Find First One) or FLO (Find LastOne) to �nd the index of the high-order or low-order 1 in a computer word [4]. Manyinstruction sets do not contain such instructions, however, and thus it is up to a compilerwriter or assembly-language programmer to synthesize the indexing operation.1This research is supported by the Defense Advanced Research Projects Agency (DARPA) under GrantF30602-97-1-0150.1The opposite problem, that of taking an index of a bit and outputting a word with a 1 set in thatposition, can be done with a left shift operation. 1



The remainder of this paper is organized as follows. Section 2 describes the deBruijnalgorithm. Section 3 compares the deBruijn algorithm with other strategies for indexinga 1 in a computer word. Section 4 proposes an extension of the deBruijn algorithm toindexing multiple 1 bits. Finally, Section 5 provides some concluding remarks.2 The deBruijn algorithmThis section describes our deBruijn strategy for indexing a 1 in a computer word. We givethree key ideas which, taken together, provide an e�cient implementation for this problem.Idea #1: Isolate a 1.We �rst reduce the problem of �nding a 1 in an arbitrary word to that of �nding a 1 in a wordthat contains exactly one 1. If the (nonzero) input word is x, we compute y = x & (-x)(\&" is C syntax for bitwise AND), which produces a word y having a 1 in the position ofthe low-order 1 of x. For example, if x = 01101000, then the two's complement of x is-x = 10011000, and thus y = 00001000. To index all the 1's in a word, we can computex - y, thereby removing the bit already indexed, and repeat the process.This strategy for isolating a 1 appears to be folk knowledge. It is fast on contemporarymachines, because the bitwise AND and two's complement are register operations that canbe accomplished in a single machine cycle.Idea #2: Hashing.We are now left with the problem of indexing the 1 in a word that contains exactly one 1.For an n-bit word, there are exactly n possible words containing exactly one 1. Since n issmall, we can use another trick from algorithms: hashing. We use a perfect hash functionh to map each of the single-1 words to a hash table. Then, given a single-1 word x, we lookup h(x) in the hash table where the index of the 1 bit is stored. For this strategy to worke�ciently, however, we need� the hash table to be small,� the hash function to be easily computable, and� the hash function to produce no collisions, i.e., no two single-1 words x and y shouldproduce hash values such that h(x) = h(y).Idea #3: de Bruijn sequences.The �nal idea uses de Bruijn sequences [3] to satisfy all three criteria. The size of the hashtable is exactly n, the minimum possible. The hash function is a typical multiplicative hashfunction [2, pp. 228{229] that involves a single unsigned integer multiplication of the keyby a \de Bruijn" constant. Surprisingly, no two single-1 words hash to the same location.Let us briey review de Bruijn sequences before seeing how they are used in this ap-plication. A length-n de Bruijn sequence , where n is an exact power of 2, is a cyclic2



sequence of n 0's and 1's such that every 0-1 sequence of length lgn occurs exactly onceas a contiguous substring.2 For example, a length-8 de Bruijn sequence is 00011101. Each3-bit number occurs exactly once as a contiguous substring: starting from the leftmost 3bits and moving a 3-bit window right one bit at a time, we have 000, 001, 011, 111, 110,101, 010 (wrapping around), and �nally, 100 (also wrapping around).The hash function is computed byh(x) = (x * deBruijn) >> (n� lgn)where \>>" denotes a logical right shift; multiplication is performed modulo 2n, meaningthat the high-order bits of the product are thrown away; and debruijn is a computerword whose bit pattern contains a length-n de Bruijn sequence beginning with lgn 0's. Forexample, for an 8-bit word, we might have debruijn = 00011101, although any other deBruijn sequence starting with 3 0's, such as 00010111, would work equally well.3 For thehash function using debruijn = 00011101, the table indexed by the hash function is thefollowing: h(x) Index000 0001 1010 6011 2100 7101 5110 4111 3Here, we have used the 3-bit binary number produced by the hash function on the left andthe decimal number stored in the table on the right.To illustrate how the hash function works, consider the input 00010000. We multiplyby 00011101, producing the 16-bit product 0000000111010000, of which only the low-order8 bits 11010000 are retained. We shift this word right by 8�3 = 5 bit positions, producingthe value 110. We index the table, producing the value 4 as the index of the 1.What is going on? The single-1 words are all powers of 2. Multiplying by a power of2 is equivalent to a shift. If the input to the hash function has a bit on in position i, thenthe multiplication causes debruijn to be shifted left by i positions. Each of the n possibleshifts causes the top lgn bits of the resulting n-bit word to take on a distinct value. Shiftingthese lgn bits into the low-order bits of the word allows us to index the table mapping the\de Bruijn index" into the normal index. Indeed, for some applications, any index of bitposition works as well as the normal numbering scheme, in which case the de Bruijn indexh(x) itself can be used, saving the additional expense of indexing a table.Figure 1 gives a 32-bit C implementation of the deBruijn strategy.2We use the notation lg n to mean log2 n.3Guy L. Steele, Jr. of Sun Microsystems has noticed that the de Bruijn sequence need only begin with(lg n)� 1 0's. 3



#define debruijn32 0x077CB531UL/* debruijn32 = 0000 0111 0111 1100 1011 0101 0011 0001 *//* table to convert debruijn index to standard index */int index32[32];/* routine to initialize index32 */void setup( void ){ int i;for(i=0; i<32; i++)index32[ (debruijn32 << i) >> 27 ] = i;}/* compute index of rightmost 1 */int rightmost_index( unsigned long b ){ b &= -b;b *= debruijn32;b >>= 27;return index32[b];} Figure 1: 32-bit C implementation of the deBruijn strategy.3 Empirical resultsThe expensive operations in the deBruijn scheme are the integer multiplication, which issurprisingly slow on many contemporary machines, and the table lookup, because operationson memory are slow compared with register operations. Nevertheless, our experimentshave determined that the deBruijn scheme is often faster than or competitive with otherindexing methods on many machines. This section provides an empirical comparison of thedeBruijn scheme with other common methods for indexing a 1 in a computer word.The fastest indexing method, which we call the Native method, computes the indexin hardware. This method is not available on many computer, however. Thus, most of ourcomparisons are with software-based algorithms.One popular software algorithm, which we call float, treats the input word as anunsigned integer and converts it into a oating-point number. Then, the index of the �rst 1can be found by masking o� the exponent. Since many machines provide integer-to-oating-point conversion as a single instruction, this method can be quite fast.Another common strategy is to use a table lookup. Unfortunately, a naive table-drivenstrategy does not work well because there must be 2n entries in the table to handle everypossible con�guration of bit settings in a word. For n = 64, the table would be prohibitivelylarge. By using the divide-and-conquer paradigm, however, this method can be made towork e�ectively.The lookup strategy we used in our comparisons works as follows. We �rst isolate a 1 inthe computer word, and then test whether the upper half is zero. If it is zero, we recursivelyindex the lower half of the word, and if it is nonzero, we recursively index the upper half of4



Machine lookup16 lookup4 float deBruijn nativeUltraSPARC II 7.2 13.5 24.1 10.5 N/AAlpha 21164 6.6 9.9 8.9 7.9 N/APentium II 7.7 13.7 31.4 6.4 2.2R10000 4.0 8.3 6.0 2.5 N/AFigure 2: Comparison of 32-bit implementations. Times are reported in processor cycles for eachof the architectures.the word. We terminate the recursion when the remaining portion that needs to be indexedis su�ciently small that table lookup can be performed easily. This strategy contains nolong-latency instructions, but it can nevertheless be slow, because the branches used in therecursion cannot be easily predicted by the branch-prediction hardware in contemporarycomputers.We compared the 32-bit implementation of deBruijn from Figure 1 with good imple-mentations of the lookup and float strategies. We tested two implementations of thelookup strategy: lookup16, which uses a table with 216 entries (256K bytes) and 16-bitkeys; and lookup4, which uses a table with 16 entries and 4-bit keys. (The deBruijnstrategy itself uses a table with 32 entries and 5-bit keys.) We implemented the algorithmsin C, and where necessary in assembly language, on four machines: a 167-MHz Sun Ultra-SPARC II [10], a 300-Mhz Pentium II [7, 8], a 466-MHz Alpha 211644 [4], and a 194-MHzR10000. The results are tabulated in Figure 2.To compare the strategies we measured the average number of clock cycles to �nd theindex of a 1 in a circular shifted test number with seven 1 bits. We did not use randomnumbers, since the number of bits set to 1 is likely to be half the word size, thereby makingthe branches in the lookup strategy more predictable than they would be for sparselypopulated input words, which are common in most applications. Although the resultstended to vary from one run to the next, the relative numbers reported in Figure 2 arereasonably consistent.As can be seen from the �gure, the deBruijn strategy is a good method on all fourplatforms. The lookup16 method outperforms it on the UltraSPARC and Alpha, butlookup16 requires a 256K-byte table, which for many applications would be prohibitivelylarge. By choosing shorter keys, such as 4-bit keys for the lookup4 method, this tablecould be made smaller, but performance would su�er.We also compared 64-bit implementations. Since 32-bit multipications tend to be fastcompared to 64-bit multiplications on some machines, we implemented a modi�cation ofthe 64-bit deBruijn strategy that we call half-deBruijn. After extracting a single 1 bit,we determine which half-word contains the 1, and then use the 32-bit deBruijn algorithmon that half-word. The expensive operations for this strategy are one 32-bit mutliplication,one table lookup, and one (unpredictable) branch. We compare these strategies with thefloat method described above and a lookup strategy that uses a table with 216 entriesand 16-bit keys. The comparisons of the various strategies are shown in Figure 3.As can be seen from the �gure, either the deBruijn or the half-deBruijn algorithm4The Alpha 21264, a later model, implements a native instruction for �nding the rightmost bit.5



Machine lookup float deBruijn half-deBruijnUltraSPARC II 15.6 16.9 25.5 13.7Alpha 21164 14.4 19.1 21.0 18.1Pentium II 35.4 56.2 32.2 26.6R10000 8.0 8.1 6.6 8.0Figure 3: Comparison of 64-bit implementations. Times are reported in processor cycles for eachof the architectures.is fastest on three of four architectures for the 64-bit indexing problem. The crucial issueseems to be the speed of 64-bit multiplication on these machines. In the full paper, we shallattempt to break down the performance �gures.4 Indexing two 1'sWe have investigated whether our indexing strategy can be extended to indexing the 1'sin words with at most two 1's. For example, a chess program might use this method todetermine the positions of the two White Knights in a 64-bit representation of a chessboard.Although we have found no general theory for indexing multiple bits, we have made someempirical progress. This section describes our algorithm for indexing double-1 words andcompares it to a lookup-based strategy.For a computer word with two 1's, we can apply the deBruijn strategy twice, whichapproximately doubles the cost. Can we index the two 1's with less work? There are�n2� + n + 1 possible n-bit words with at most two 1's set. Is there a hash function thatwould allow us to index the 1's with only a single multiplication and table lookup on a tablenot much larger than �n2�+ n+ 1?We have written a Cilk [1, 6] parallel backtracking program to search for a hashingconstant that could be used in a multiplicative hash function to index two or fewer bits.The key observation used by the algorithm is that the hash value of an input word whose slow-order bits are all zero depends only on the low-order n� s bits of the hashing constant.In each step the algorithm tries to extend the n� s low-order bits of the hash constant ton� s+ 1 bits. If any of the input words with s� 1 zero low-order bits collide, the searchaborts and backtracks. The smallest table we found with this method for 64 bits contains215 entries, which is 16 times larger than the optimal table with slightly more than 211entries.Our search yielded the following hash function, which maps all 64-bit numbers with atmost two 1's into a table with 32706 entries:h(x) = (x * E50F A91B E3A2 540116) >> 49We implemented the deBruijn2bit method on the four reference architectures andcompared it to a strategy we call lookup2bit that uses the 64-bit lookup method twice.(Recall that lookup uses a table of 216 entries and 16-bit keys.) Our results are tabulatedin Figure 4. Compared to the lookup2bit strategy, which needs two memory lookups andhas two unpredictable branches, deBruijn2bit performs only one multiplication and one6



Machine lookup2bit deBruijn2bitUltraSPARC II 52.2 38.0Alpha 21164 30.9 26.8Pentium II 148.7 53.1R10000 79.3 21.7Figure 4: Comparison of 64-bit implementations for indexing two bits. Times are reported inprocessor cycles for each of the architectures.memory lookup. It is not only faster than lookup2bit on all the architectures tested, italso needs only half the memory to store its hash table.5 ConclusionThe deBruijn method seems to be a good trick for the bit-twiddling arsenal. We expectthat technology will drive hardware implementations of integer multiplication to get faster(because of the heavy use of integer multiplication in cryptography and data compres-sion [9]). Consequently, we can expect that the deBruijn method will outperform othersoftware implementations by increasing margins. On the other hand, it is also possible thatdirect hardware support for indexing 1's will increasingly be provided, obviating the needfor software implementations.We were unable to �nd a good theory for indexing sparse, multiple-1 bit computer words.Perhaps with more theoretical insight a practical hashing strategy can be found.AcknowledgmentsThanks to Chris Joerg from the DEC Cambridge Research Laboratory who originally sug-gested the idea of hashing. Thanks to Guy L. Steele, Jr. of Sun Microsystems and DonDailey of MIT for helpful comments.References[1] Cilk-5.2 (Beta 1) Reference Manual. Available on the Internet fromhttp://theory.lcs.mit.edu/~cilk.[2] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction toAlgorithms. The MIT Press, Cambridge, Massachusetts, 1990.[3] Nicolaas G. de Bruijn. A combinatorial problem. In Indagationes Mathematicae, vol-ume VIII, pages 461{467. Koninklije Nederlandsche Akademie van Wetenschappen,1946.[4] Digital Equipment Corporation, Maynard, Massachusetts. Alpha Architecture Hand-book, Version 3, 1996. 7



[5] Peter W. Frey and Larry Atkin. Creating a Chess Player, pages 226{324. Springer-Verlag, New York, 1998.[6] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of theCilk-5 multithreaded language. In ACM SIGPLAN '98 Conference on ProgrammingLanguage Design and Implementation (PLDI), pages 212{223, Montreal, Canada, June1998.[7] Intel Corp. Pentium Pro Family Developer's Manual, Vol. 3, 1995. Available athttp://developer.intel.com/design/pro/MANUALS/refer1.htm.[8] Intel Corp. Intel Architecture Software Developer's Manual, Vol. 1, 1997. Available athttp://developer.intel.com/design/pro/MANUALS/243190.htm.[9] 1998 ACM SIGPLAN conference on programming language design and implementation(PLDI), 1998. Architecture Panel Session.[10] David L. Weaver and Tom Germond, editors. The SPARC Architecture Manual, Ver-sion 9. PTR Prentice Hall, 1994.
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